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Abstract. In this paper we evaluate empirically whether there exist
significant differences in the numerical results produced by six well-
known fuzzy quantification models when applied to the evaluation of
unary and binary fuzzy quantified statements on numerical data sets.
The models we analyzed are: Zadeh’s scalar and fuzzy cardinality,
Yager’s OWA, Delgado’s GD, Sugeno integral and Vila’s VQ. These
models were tested by evaluating the degree of fulfillment they pro-
duced on fifteen numerical data sets from the UCI Machine Learning
repository for all the possible fuzzy quantified statements generated
by partitions of up to seven quantifiers and linguistic terms of the
variables involved. We conducted tests of statistical significance for
these evaluation results under a pair-wise comparison. Results indi-
cate that no significant differences were found among the models for
unary quantifiers involving a single imprecise property, with a single
exception of very limited outreach. For binary quantified statements
involving two imprecise properties, significant differences were ob-
served in general among all the pairs of fuzzy quantification models
under study. Therefore, in spite of unary models fulfill different theo-
retical properties, the models under study exhibit very similar empir-
ical behaviour. For binary models, results point out that the selection
of a particular model should be guided by other criteria (e.g. the prop-
erties they fulfill) different than their experimental behaviour, which
is empirically proved to be different.

1 INTRODUCTION

The presence and use of linguistic quantifiers in human language is a
very powerful tool for representing and describing knowledge about
the quantity of elements that fulfill one or more properties [13].

Let us consider the following quantified statements as initial exam-
ples: ”Women’s voting was about 60%” and ”Almost all workers are
young.” In both cases, the statements express linguistically the num-
ber (”About 60%”, ”Almost all”) of elements in a given referential
(women, workers) that respectively fulfill the corresponding proper-
ties, which in the examples are crisp (”having voted”) and impre-
cise (”being young”). From the linguistic point of view, determiners
are the elements that usually develop the quantification role in lan-
guage. Among the huge variety of determiners we use in language
(lexical, proportional, absolute, exception, partitive, ...)[28, 25, 16],
most of the attention in the related literature has been paid to ab-
solute quantifiers, which express quantities over the total number of
elements of the referential that fulfill the properties (e.g. “Two or
more”, “A few”), and relative quantifiers, which make the counting
depending on the total number of elements of the referential (e.g. “A
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half”, “Almost all”). Regarding the number of properties considered
in the quantified statements (the n-arity of the quantifier) it usually
ranges from on (unary quantifiers) to four (quaternary quantifiers),
although literature has mostly focused on unary and binary quanti-
fiers [2, 27, 29].

Unary quantified statements have the following structure: “Q X
are S” where Q is a quantifier (e.g., “some”), X is a referential set
(e.g., “students”), and S is a linguistic value (e.g., “tall”). Thus, an
example of unary quantified statement is: “Some students are tall”.
Binary quantified statements have the structure ”Q KX are S”, where
an additional linguistic value K is included (e.g., ”blonde”). Thus,
an example of binary quantified statement is: “Some blonde students
are tall”.

In general, quantified sentences are a versatile tool for modelling
natural language expressions which are used in a wide range of areas
[13]. For instance, in multiple-criteria decision-making, fuzzy quan-
tification models were proposed for aggregating the criteria accord-
ing to their importance. Another fruitful application is fuzzy query-
ing on databases, since natural language statements can be modelled
by quantified sentences, being also suitable in the information re-
trieval area.

Quantified sentences are also used for building linguistic descrip-
tions of data (LDD) [26, 35], which provide quantitative information
about the fulfillment of some properties of interest in a numerical
data set. Since the quantitative information, as well as the proper-
ties, is, in general, imprecise or fuzzy, many LDD models use the
concept of quantified protoform [50] and follow the computing with
words paradigm, where computations are performed on linguistic
terms modeled as fuzzy sets [47, 52, 51], and its evolution, comput-
ing with perceptions [48, 49]. The information included in LDD may,
in some cases, be directly consumed by users (as a way of conveying
the information hidden in the data) but, in most cases, LDD are used
in the content determination stage of the Natural Language Gener-
ation pipeline [32, 33]. Within the natural language generation field
(NLG), many systems have been developed over the years with the
aim of generating comprehensible texts from different data sources
for a wide variety of application domains [24]. In NLG, LDD are
actually pieces of information, usually described in an intermediate
language, which are abstracted and combined with other information
sources in order to produce (after performing the planning stages) the
final natural language narrative which is conveyed to and consumed
by the users.

Evaluating quantified sentences involves the use of a fuzzy quan-
tification model, which calculates the fulfillment degree of the sen-
tence (a value in the range [0,1]). The fulfillment degree in quantified
sentences is a measure that combines the cardinality, i.e., how many
elements in the referential match the property in the statement, and
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the compatibility between the cardinality and the quantifier. Several
fuzzy quantification models have been proposed in the literature and
were later studied from a theoretical perspective in terms of the prop-
erties they fulfill [25, 14, 13, 3, 9, 13, 16, 17, 18, 19, 37]. An extensive
list of properties (including monotonicity, continuity, correct gener-
alization, negation, antonymy and duality, among others) has been
described, considering different aspects, that help to characterize the
behaviour of the fuzzy quantification models. From this perspective,
all the fuzzy quantification models exhibit different behaviour, since
all of them fulfill different properties. Also some of them exhibit non
plausible behaviour for some uses, since they fail to fulfill some rel-
evant properties. But the behaviour of the models has not been stud-
ied yet from a practical or pragmatical perspective, by analyzing the
real quantitative differences existing among them. This experimental
approach, which has been adopted in other research fields (such as
Machine Learning, for instance [21, 22]) is being done for the first
time in this paper.

Our aim is to experimentally test whether there are significant dif-
ferences between the most widely used unary and binary fuzzy quan-
tification models used in quantified sentences. Therefore, this paper
attempts to extend the previously mentioned theoretical studies to de-
termine if significant differences exist among the methods and assess
whether the presence or absence of differences justifies the applica-
tion of one method over the others.

This paper is structured as follows: firstly, in Section 2 we describe
the fuzzy quantification models included in our experimentation. In
Section 3, we describe the selected data sets to perform our com-
parison and the definition of their associated protoform components
(namely, the fuzzy variables, their partitions and the fuzzy quanti-
fiers). Section 4 presents the experimental comparison between the
fuzzy quantification models for unary and binary cases. Finally, Sec-
tion 5 closes the paper with some final remarks.

2 FUZZY QUANTIFICATION MODELS

In Fuzzy quantification models, Zadeh [43, 44, 45, 46] proposed an
extension of the classical existential and universal quantifiers (“exist”
and “for all”), as well as other crisply defined quantifiers (e.g. ”more
than 40%”) to imprecise (fuzzy) quantifiers with a higher degree of
expressiveness, such as “a few” or “most of”. Later on, following
a different perspective research line for the proposal of imprecise
quantification models, the Theory of Generalized Quantifiers (TGQ)
was developed [4, 6, 28] independently.

In [25], a generalization of the TGQ based on quantifier fuzzifica-
tion mechanisms (QFM) was proposed. This generalization allows to
define a fuzzy quantifier based on a transformation from semi-fuzzy
quantifiers, which are easier to design. This mechanism can be ap-
plied to a wide range of quantifiers (not just absolute and relative
ones), such as comparative, exception, ternary or quaternary quanti-
fiers.

Evaluating a quantified sentence, as described above, involves
computing its fulfillment degree. In this evaluation two elements
must be considered: i) the cardinality, i.e., how many elements in
the referential fulfill the (fuzzy) linguistic values stated for the vari-
ables in the statement; ii) the compatibility between the cardinality
and the quantifier.

We describe in what follows these two elements for the six fuzzy
quantification models in our study, which are the most frequently
used in the literature.

2.1 Unary quantification models

In this section we present the unary fuzzy quantification models we
have considered in our study. They are used in fuzzy quantified state-
ments that are referred in the literature as unary quantified state-
ments, which follow the “Q X are S prototype.

2.1.1 Sum-based evaluation methods

Zadeh’s method. This method [46] is based on the scalar cardi-
nality “power” defined by Zadeh as P (A) =

∑n
i=1 A(xi).

The evaluation of unary quantified sentences for relative quanti-
fiers is defined as:

ZQ(A) = Q

(
P (A)

|X|
)

(1)

Yager’s method based on OWA operators This method is a spe-
cial case of the Choquet integral [8, 7]. For unary quantified state-
ments, the degree of truth based on Choquet integral is defined as:

CQ(A) =
∑

i = 1nbi × (Q(i/n)−Q ((i− 1)/n)) (2)

Yager’s method [40] can only be used with coherent2 and relative
quantifiers.

Being wi = Q
(

i
|X|

)
−Q

(
i−1
|X|

)
, i ∈ {1, ..., n} and Q(0) = 0,

the evaluation is:

YQ(A) =
n∑

i=1

wibi (3)

where bi is the i-th higher value of the fulfillment degree to the
fuzzy set A.

Delgado’s GD method The GD method [15, 13] is a quantifica-
tion model of the so-called-G-family that belongs to a method family
based on a fuzzy cardinality E defined as follows:

GDQ(A) = ⊕
i∈{0,...,n}

(
E(A, i)⊗Q

(
i

n

))
(4)

Using the product as t-norm and the Lukasiewicz’s t-conorm, the
evaluation of a unary quantified statement with relative quantifiers is
as follows:

GDQ(A) =
n∑

i=0

ED(A, i)×Q

(
i

n

)
(5)

where ED(A, k) = bk − bk+1 with b0 = 1 and bn+1 = 0 is the
ED fuzzy cardinality [14], a particular case of the E cardinality, using
the minimum t-norm, Lukasiewicz’s t-norm, the maximum t-conorm
and the standard negation.

2.1.2 Max-min-based evaluation methods

Sugeno integral based method The Sugeno integral [8] is another
method to evaluate quantified sentences which also requires coherent
quantifiers. In the relative quantifier case, the evaluation is:

SQ(A) = max
1≤i≤n

min

(
Q

(
P (A)

|X|
))

(6)

2 A quantifier Q is coherent if Q(xi) ≤ Q(xi+1)∀xi < xi+1 and Q(0) =
0, Q(1) = 1.
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ZS method This method [9] is based on Zadeh’s fuzzy cardinality:

Z(A, k) =

{
0 if �α | |Aα| = k
sup{α | |Aα| = k} otherwise

(7)

The evaluation for unary quantified statements with relative quan-
tifiers is:

ZSQ(A) = max
k∈{0,...,n}

min

(
Z(A, k), Q

(
k

n

))
(8)

It can be proved [13] that (8) is equivalent to:

ZSQ(A) = max
α∈M(A)

min (α,Q(|Aα|)) (9)

where M(A) = {α ∈ (0, 1] |∃xi ∈ X with A(xi) = α} ∪ {1}
so the method evaluation can be performed without calculating the

Z cardinality.

2.2 Binary quantification models

In this section we present the binary fuzzy quantification models we
have considered in our study. They are used in fuzzy quantified state-
ments that are referred in the literature as binary quantified state-
ments, which follow the “Q KX are S” prototype.

2.2.1 Sum-based evaluation methods

Zadeh’s method This method [46] is based on the relative cardi-
nality of A and D:

P (A/D) =
P (A ∩D)

P (D)
(10)

The evaluation of relative quantifiers is as follows:

ZQ(A/D) = Q (P (A/D)) = Q

(
P (A ∩D)

P (D)

)
(11)

Yager’s method based on OWA operators Yager’s model [40]
can only be generalized to binary sentences for coherent and relative
quantifiers. Its parameters are calculated as follows:

wi = Q(Si)−Q(Si−1) i ∈ {1, ..., n} (12)

where

Si =
1

d

i∑
j=1

ei, d =
n∑

k=1

ek (13)

being ek the k-th low value of D set’s fulfillment degree and S0 =
0. The evaluation is:

YQ(A/D) =
n∑

i=1

wici (14)

where ci is the i-th highest value of the set of fulfillment degrees
of (¬D ∨A).

Delgado’s GD method The generalization of the GD method [15]
uses the fuzzy cardinality ER, which utilizes the product as t-norm
and the Lukasiewicz’s t-conorm, as follows:

GDQ(A/D) =
∑

c∈CR(A/D)

ER(A/D, c)×Q(c) (15)

where

CR(A/D) = { |(A ∩D)α|
|Dα| with α ∈ M(A/D)} (16)

and

M(A/D) = M(A ∩D) ∪M(D), and

M(A) = {α ∈ (0, 1] |∃xi ∈ X with A(xi) = α} (17)

It can be proved [13] that the evaluation 15 is equivalent to:

GDQ(A/D) =
∑

αi∈M(A/D)

(αi − αi+1)×Q (C(A/D,αi)) (18)

where if M(A/D) = {α1, ..., αm} an α-cut set defined in 16
with 1 = α1 > ... > αm > αm+1 = 0, then:

C(A/D,αi) =
|(A ∩D)αi |
|Dαi |

(19)

Thus, the evaluation of a binary quantified statement can be per-
formed without calculating the ER(A/D) cardinality.

2.2.2 Max-min-based evaluation methods

Vila, Cubero, Medina and Pons’ method This method [37]
uses the “or” or “orness” degree defined for coherent quantifiers.
orness(∃) = 1 and orness(∀) = 0. Every coherent quantifier Q
between ∃ and ∀ has an orness degree in the [0, 1] interval:

oQ =
n∑

i=1

(
n− i

n− 1

)
×

(
Q

(
i

n

)
−Q

(
i− 1

n

))
(20)

Then, the evaluation for a binary quantified statement is:

VQ(A/D) = oQ max
x∈X

(D(x) ∧A(x))

+(1− oQ)min
x∈X

(A(x) ∨ (1−D(x)))
(21)

ZS method This method [9], which uses the fuzzy cardinality ES,
consists in a max-min composition between that cardinality and the
quantifier, being the evaluation as follows:

ZSQ(A/D) = max
c∈CR(A/D)

min (ES(A/D), c), Q(c)) (22)

It can be proved [13] that 22 is equivalent to:

ZSQ(A/D) = max
α∈M(A/D)

min(α,Q

( |(A ∩D)α|
|Dα|

)
(23)

Thus, once again the evaluation of a binary quantified statement
can be performed without calculating the ES(A/D) cardinality in-
dependently.
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3 MATERIAL AND METHODS

3.1 Data sets

We have used in the experiments fifteen data sets which have been
used for different Artificial Intelligence-related tasks, such as classi-
fication, regression or others, and are available in the UCI machine
learning repository [20]. The most relevant quantitative features of
the data sets we considered are described in Table 1. The data sets
meet the following conditions:

• They have at least two attributes.
• They have at least one numerical attribute.
• No large-scale data set were considered.

The number of instances in the collection of 15 data sets included
in the experiment is ample, and ranges from 100 to 50,000. This al-
lowed us to test the methods performance under different data set
size scenarios. It is relevant to note that we are considering larger
data sets than the ones reported in the related literature of linguis-
tic descriptions of data using fuzzy quantification (for instance, 282
instances in [1], 513 in [10] or 1,268 in [38, 39]).

Data sets with missing values were used, but some pre-processing
was performed to remove the rows which contained them. Further-
more, in the “Glass” data set, the attribute “Id” was removed since it
does not describe a data feature.

3.2 Fuzzy Quantified Statements

3.2.1 Linguistic variables

The sets of linguistic terms that are used to summarize and/or qualify
a referential in quantified sentences are known as linguistic variables
[32], e.g., speed = {low, medium, high}. This concept was originally
introduced by Zadeh in his early works as a more extensive idea that
involves other elements such as operators and hedges [44]. However,
the simpler definition provided above is widely used for the purposes
of LDD and quantified sentences in general [32].

The data sets in our study contain both categorical and numerical
variables. Consequently, we created linguistic variables for both vari-
able types, so that fuzzy quantified statements containing both kinds
could be computed.

In the case of categorical variables, the different values or classes
are directly taken as the linguistic terms of the corresponding linguis-
tic variable, which were modeled as crisp sets (or singletons). For in-
stance, the attribute “class” of the “Iris” data set has the following
values: {“Iris Setosa”, “Iris Versicolor”, “Iris Virginica”}. From this
kind of variables, crisp categorical variables were created using their
values as linguistic terms.

On the other hand, for numerical variables linguistic terms were
modeled as trapezoidal fuzzy sets. For each numerical variable in a
data set, we generated four different linguistic variables, each one
containing a different number of linguistic terms. Three of these
linguistic variables correspond to a fuzzy partition with equidistant
fuzzy sets including, respectively 3, 5 and 7 linguistic terms. The re-
maining linguistic variable involved one partition with 5 randomly
defined fuzzy sets. As in most approaches in LDD, the fuzzy parti-
tions for every linguistic variable were defined as trapezoidal strong
fuzzy partitions [34], i.e., for each point the sum of the fulfillment
degree is 1.

Figure 1 shows an example of an equidistant partition, where a sin-
gle parameter α models the distance between each pair of contiguous
fuzzy sets. This parameter is calculated for each numeric variable in a

data set as α = (max−min)/(2n−1) being min,max respectively
the minimum and maximum values of the corresponding numerical
domain and n the number of terms.

3.2.2 Quantifiers

As mentioned before, in quantified sentences such as “Most blonde
people have blue eyes”, quantifiers are necessary to evaluate the
(fuzzy) amount of individuals in the referential that fulfill a given
condition (in the form of a summarizer or a qualifier).

We selected seven quantifiers {“At least one”, “A few”, “Some”,
“About half”, “Most”, “Almost all”, “All”}. All of them were defined
as coherent fuzzy quantifiers, as this was a necessary condition by
some of the fuzzy quantification models (Yager’s method, Sugeno
integral based method, and Vila et al. method), which can only be
applied to this type of quantifiers.

We designed two different fuzzy partitions for these quantifiers:
equidistant and random. Figure 2 shows the equidistant coherent def-
inition for these quantifiers, since they are defined as monotonically
increasing while fulfilling that Q(0) = 0 and Q(1) = 1. Therefore,
they can be evaluated under all the six fuzzy quantification models
described in Section 2.

3.3 Experiments

As mentioned before, our objective in this study was to perform
a comparison among the selected fuzzy quantification models de-
scribed in Section 2 with the aim of detecting significant differences,
if any. This study consisted in two stages (Figure 3): i) Generation of
linguistic descriptions, which involves two sub-stages: i-a) ”descrip-
tions set,” where we generate all possible unary and binary fuzzy
quantified statements for every fuzzy quantification model and data
set and i-b) ”quantification stage,” where we evaluate them with the
six fuzzy quantification models; ii) based on the lists of resulting
fuzzy quantified statements, we run tests of statistical significance to
detect significant differences between pairs of fuzzy quantification
models.

3.3.1 Generation of linguistic descriptions

At this stage, we generated all possible unary and binary fuzzy quan-
tified statements for each data set described in Section 3.1. First, we

μ

min min+α min+2α min+4αmin+3α min+5α min+6α min+7α min+8α max

Figure 1. Linguistic variable definition from numerical variable with 5
equidistant linguistic terms.

μ

•At least one A few

0% 15%

Some

30% 60%

About a half

45% 75%

Most Almost all All

100%

Figure 2. Equidistant definition of the quantifiers.
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Table 1. Some relevant features of the data sets used in the experiments

Data set #instances #attributes Associated task Missing values
#total #numerical #categorical

Abalone [20] 4,177 8 7 1 Classification No
Acute inflammations [11] 120 8 1 7 Classification No
Liver disorders [20] 345 7 6 1 N/A No
Balance [20] 625 5 4 1 Classification No
Iris [20] 150 5 4 1 Classification No
Blood transfusion service center [42] 748 5 4 1 Classification No
Credit approval [20] 690 16 15 1 Classification Yes
Wine [20] 178 14 13 1 Classification No
Breast cancer Wisconsin [5] 699 11 10 1 Classification Yes
Bank marketing [30] 45,211 17 7 10 Classification No
Air quality [12] 9,358 14 14 0 Regression Yes
Airfoil self-noise [20] 1,503 6 6 0 Regression No
Glass identification [20] 214 11 10 1 Classification No
Energy efficiency [36] 768 10 10 0 Classification, regression No
Concrete compressive strength [41] 1,030 9 9 0 Regression No

Figure 3. Description of the experimentation stages with their inputs and outputs.

generated linguistic variables from all attributes in a data set, creating
both crisp categorical and fuzzy numerical linguistic variables based
on the nature of the source variables, as described in Section 3.2.1.

Our unary quantified statements follow the standard form previ-
ously described (“Q X are S”), being Q is the set of equidistant or
random quantifiers and S is the set of linguistic terms of each of the
linguistic variables. For each data set, we generated all possible state-
ments from the entire set of generated linguistic variables.

Likewise, we generated binary quantified statements following the
described structure in Section 1 (“Q KX are S”). Once again, Q and S
maintain their respective roles from unary quantified statements, and
K is another term in the set of linguistic terms of the corresponding
linguistic variables, where K �= S. As in unary quantified state-
ments, we generated all possible statements by obtaining the entire
set of combinations of Q, K and S.

The next step of this stage is the evaluation of the statements. For
each data set and fuzzy quantification model we performed two dif-
ferent studies: i) with a complete set composed of both categorical
and fuzzy linguistic variables; and ii) considering only the subset of
fuzzy linguistic variables generated from numerical attributes.

The reason for these two separate studies lies in the convergent
behaviour of fuzzy methods when dealing with crisp sets. Thus, we

chose to additionally study the same data sets considering only nu-
merical variables (and consequently only fuzzy linguistic variables)
to avoid any possible bias caused by the inclusion of categorical vari-
ables. Table 2 shows a summary of the number of experiments we
undertook for each empirical study.

For binary quantified statements, the study based only on the fuzzy
linguistic variables was performed with 14 data sets, since the Acute
inflammations data set [11] had to be discarded as it only contains one
numerical attribute. This means only one fuzzy linguistic variable
can be generated and therefore can not be used to produce binary
quantified statements, since these require at least two: one for K and
another one for S.

The result of this stage for each data set is a pair of lists of all
possible statements (one for unary quantified and another one for bi-
nary quantified sentences) with the results from the evaluation with
the compared fuzzy quantification models. These lists are ordered by
their associated degree of fulfillment (in descending order). Thus, for
a given experiment, the test to determine the possible difference be-
tween a pair of fuzzy quantification models consists in a comparison
of their corresponding sentence rankings (“all vs. all” comparison, as
we will describe in what follows).
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Table 2. Number of experiments performed for each scenario.

Quantifier # Linguistic values # Experiments

7 equidistant

3 equidistant 1
5 equidistant 1
7 equidistant 1

3 random 5
5 random 5
7 random 5

7 random 3 equidistant 5
5 equidistant 5
7 equidistant 5

Total 33

3.3.2 Significance tests

We performed a non parametric test since our data do not meet the
following conditions: normality (the distribution of the data follows a
Gaussian distribution) and homocedasticity (the distributions of dif-
ferent groups are equal).

Considering the number of the compared fuzzy quantification
models, 5 for each description type, and the data sets size, we per-
formed the Friedman test [23] and the post-hoc Nemenyi test [31]
since we made an “all vs all” comparison. According to the Nemenyi
post-hoc test two methods differ significantly when p < 0.05 and
differ highly significant when p < 0.01. The tests were performed
separately for unary and binary quantified statements.

For unary quantified statements it was theoretically proved in the
literature [15] that two pairs of the fuzzy quantification models in
Section 2 are equivalent under certain conditions:

• Delgado’s GD method [15] is a generalization of Yager’s method
[40] for relative and coherent quantifiers.

• ZS method [9] is a generalization of the Sugeno integral base
method [8] also for coherent quantifiers.

Our aim is to empirically extend these results for the other eight
pairs. Therefore, in order to keep consistence with the theoretically
proved result, we state the null hypothesis H0 as follows:

H0: There are not significant differences between the two com-

pared fuzzy quantification models when used for evaluating the

degree of fulfillment of fuzzy quantified statements.

With regard to binary quantified statements, there are no studies
that compare theoretically or experimentally the behaviour between
a pair of fuzzy quantification models. In the absence of previous stud-
ies, we kept the same null hypothesis H0 defined in the unary quan-
tified statements scenario.

4 EXPERIMENTAL RESULTS

We have conducted a total number of 957 experiments (495 with
the entire linguistic variables set and 462 with the fuzzy linguistic
variables set). For detailed information about the performed tests,
the complete results are available as supplementary material 3.

A summary of the results of the tests for unary models is presented
in Table 3, with for linguistic variables, and in Table 4, only for fuzzy
variables. These tables show the percentage of experiments where no
significant differences were detected between the corresponding pair
of fuzzy quantification models.

Analysing the results in Table 3, we can conclude they support
the null hypothesis and the theoretical affirmations presented in [15]

3 https://tinyurl.com/qs8au5b

because in almost all experiments there were no differences between
the behaviour of the fuzzy quantification models.

However, three pairs of methods, ZQ with SQ, YQ with SQ, SQ
with GDQ, showed differences between their behaviour in two of five
executions of the “Wine” data set with random partitions quantifiers.
Thus, in general, only in 0.21% experiments significant differences
were detected for each pair of methods, which in our opinion is not
representative enough.

Analysing the properties of these pairs of methods in [13] where
significant differences were detected, there exists at least one prop-
erty that is fulfilled by one of the methods of the pair but not by the
other: induced operators for the ZQ - SQ pair, monotonicity in the
quantifiers for SQ - YQ and duality for SQ - GDQ. This could be
a motivation for the significance of the differences we observed, al-
though this hypothesis needs further study and testing. On the other
hand, for the pairs of methods where no significant differences were
detected, we found that at least one property exists which is fulfilled
by one of the models of each pair whereas not by the other. There-
fore, our study shows these pairs of methods behave similarly when
evaluating unary quantified statements although they should behave
differently from the point of view of the properties they fulfill.

Table 3. Percentages of cases where unary quantified models show similar
behaviour for all the variables (crisp and fuzzy).

ZQ YQ SQ GDQ
YQ 100
SQ 99.57 99.57
GDQ 100 100 99.57
ZSQ 100 100 100 100

Results based only on fuzzy linguistic variables (Table 4) show
also the detected differences as in the previous case and also between
GDQ and ZSQ only in one of the 462 fuzzy tests.

Table 4. Percentages of cases where unary quantified models show similar
behaviour for the subset of fuzzy variables.

ZQ YQ SQ GDQ
YQ 100
SQ 99.57 99.57
GDQ 100 100 99.57
ZSQ 100 100 100 99.78

Comparing the results of these two experiments, there is not a high
dependency between the linguistic variable type and the results, since
their results differ in 0.52% of the experiments.

Despite these differences, the null hypothesis H0 is accepted in
this case since detecting significant differences in 2 out of 195 tests
between ZQ - SQ, YQ - SQ and SQ - GDQ and 1 difference between
GDQ - ZSQ in only one data set is not representative enough of their
behaviour.

Results from binary quantified statements tests are presented in
Table 5. In this scenario the percentage of cases with non-significant
differences is lower than 50% of the experiments in almost all pair-
wise comparisons, except between ZQ and GDQ (742.17% of cases
with non-significant differences).

Besides, two pairs of methods, ZQ - VQ and GDQ - VQ, have the
lowest percentage of similarity (5.80%), showing therefore the most
different behaviour in the evaluation of binary quantified statements.
This result supports the similarity of ZQ and GDQ with binary quan-
tified statements because these two methods, which have a similar
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behaviour evaluating binary quantified statements, have the same be-
haviour with respect to VQ.

In contrast with the previous case, here the null hypothesis H0 is
rejected because in almost all method pairs significant differences
were detected in more than 50% of performed tests, except in the ZQ
- GDQ comparison.

Table 5. Percentages of cases where unary quantified models show similar
behaviour for all the variables (crisp and fuzzy).

ZQ YQ VQ GDQ
YQ 19.42
VQ 5.80 12.75
GDQ 72.17 21.16 5.80
ZSQ 29.28 41.74 9.28 32.17

5 CONCLUSIONS AND FUTURE WORK

In this work, we presented an experimental comparison between the
following six well-known and widely used fuzzy quantification mod-
els: Zadeh’s scalar [46] and fuzzy cardinality [9], Yager’s OWA [40],
Delgado’s GD [15], Sugeno integral [8] and Vila’s VQ [37]. We
tested their behaviour when evaluating unary and binary quantified
sentences on fifteen data sets from the UCI machine learning reposi-
tory [20].

We have analysed experimentally whether there exist significant
differences between them when applied to the calculation of the de-
gree of fulfillment in fuzzy quantified statements.

Tests results were evaluated with a pair-wise comparison perform-
ing statistical significance tests with a null hypothesis H0 for unary
and binary quantified statements which state there are not significant
differences between a pair of fuzzy quantification models when cal-
culating the fulfillment degree of the fuzzy quantified statements. H0

is inspired on and extends the previous theoretical result [15] which
show that two of the fuzzy quantification models we have studied
([15] and [9]) are respectively generalizations of [40] and [8] under
certain conditions.

The experimentation for unary quantified statements only showed
significant differences between three pairs of fuzzy quantification
models (ZQ with SQ, YQ with SQ and GDQ with ZSQ) in 4 of 26 ex-
periments with random partitions quantifiers of one specific data set.
Thus, this study confirmed the null hypothesis for 7 pairs of fuzzy
unary quantification models in the entire set of experiments. In only
4 of a total 377 experiments for three pairs of fuzzy quantification
models significant differences were actually observed.

Therefore, these results point out that the selection of a fuzzy
quantification model for an specific case should follow another crite-
ria than their experimental behaviour (e.g., its theoretical properties
or computational cost), since from a quantitative point of view, the
differences in their empirical behaviour are, in general, not signifi-
cant.

On the contrary, the experiments for binary quantified statements
showed significant differences between two fuzzy quantification
models at least in a 50% of experiments, except between ZQ and
GDQ, where only in a 25.13% of experiments significant differences
were detected. Therefore, since in 9 pair comparisons the methods
behaviour is significant different in more than a 50% of the cases,
the null hypothesis H0 was rejected.

Therefore, these results point out that the selection of a fuzzy
quantification model for an specific case should be very careful, since

from a quantitative point of view their behaviour is significantly dif-
ferent. Other criteria, such as the theoretical properties these models
fulfill (of fail to) become more relevant for selecting the most appro-
priate model for a given use or application.

As future work, we are extending our experimentation with binary
quantified statements in the following ways: i) adding new data sets
which allow us to test these methods in a wider range of cases; ii)
considering other definitions of quantifiers and partitions of linguis-
tic terms, consequently increasing the number of experiments; iii)
performing a cluster-based analysis of the results of the statistical
significance tests for all cases, in order to explore if it is possible to
identify clear groups of fuzzy quantification models; and, finally, iv)
extending the current analysis to other fuzzy quantification models,
such as the FA [19], among others.
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